

PMI-3101 规格书

文	件	编	号:				
编			制:	 温	永		
宙			核:	朱	勇		

广州思林杰网络科技有限公司 2022 年 03 月 15 日

文件历史记录

文件	编号							
文件标题		PMI-3101 规格书						
	文件履历							
版本	本 编制 日期		日期	更改内容 (条款)				
V0.1 温永		.永	2022/03/15	初版				

目录

概述概述	.4
关键性能	.4
接口定义	.5
技术指标	.5
1 基本参数	5
2 输出特性	. 5
3 振幅与偏置特性	5
4 测量精度	6
5 常用功能建议的最大频率	6
典型应用场合	.6
外观及结构尺寸	.7
技术支持	.8
	关键性能 接口定义 技术指标 1 基本参数 2 输出特性 3 振幅与偏置特性 4 测量精度 5 常用功能建议的最大频率 典型应用场合

PMI-3101 规格书

1 概述

全新 SmartGiant PMI 信号发生器 PMI-3101 作为一种优质的波形信号发生器,它可以产生正弦、方形、三角形和斜坡等多种典型波形,也可以产生任意波形,是科学研究、自动化、消费电子中混合信号测试系统的理想选择。

本产品主要配套为研发、生产、QC(Quality Control)等提供测试服务。后续结合用户需求可以内置测试脚本,通过模块与 ICU (Integrated Control Unit)或 PC 的协同工作。

2 关键性能

- 16 位分辨率, 50Msps 采样率;
- 低输出阻抗;
- 1通道输出,精度基本保持一年;

3 接口定义

PMI-3101 的主要接口有:

1) PCI Express: 24V 电源供电及数据通道, PCIE x4。

2) Status: 状态指示灯;

3) OUTPUT: BNC 输出端子;

4 技术指标

4.1 基本参数

供电电源	24V
功耗	1.5W
通道数量	1通道
数字输入格式	并行
DAC 分辨率	16bit
采样率	40MHz
最大输出电压	$\pm 5 \text{ V} (AC_{pk} + DC)$
DAC 刷新速率	50 Msps
工作环境	0 to 45°C / 10% to 80% R.H.
储存环境	-40 to 70°C /5% to 85% R.H.
尺寸	176.5mm×129.6mm ×25.1mm

表 1 PMI-3101 模块基本参数

4.2 输出特性

输出阻抗	<25 Ω
输出耦合	DC
最大输出电流	90mA
模拟滤波器带宽	4MHz (-3dB)
频率分辨率	1Hz

表 2 输出特性@25°C±1°C

4.3 振幅与偏置特性

幅度范围	1 V _{p-p} , 10 V _{p-p}
幅度分辨率	0.06% (0.004dB)
偏置范围1	输出幅度 + 偏置 < 5V
加里拉西。	输出幅度 - 偏置 > -5V

表 3 振幅与偏置特性@25℃±1℃

-

¹ 输出受最大电压规格限制。

4.4 测量精度

交流幅度精度	±0.5% 设置输出幅度 ±1mV
偏置精度2	±0.2% 设置输出偏置 ±1 mV _{RMS}

表 4 输出精度@25°C±1°C

4.5 常用功能建议的最大频率

功能	最大频率	最大采样率	
Sine	4 MHz	50 MS/s	
Square	4 MHz	50 MS/s	最小频率 0Hz
Triangle	4 MHz	50 MS/s	
User-defined	4 MHz	50 MS/s	

表 5 常用功能建议的最大频率@25℃±1℃

5 典型应用场合

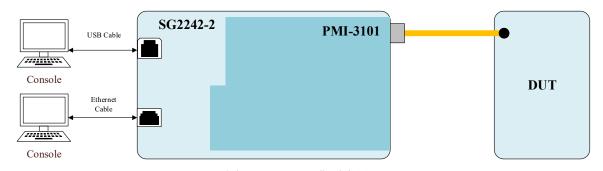


图 1 PMI-3101 典型应用

如图 1 所示, PMI-3101 安装到对应 PMI 机箱(SG2242-2)插槽,接着,将 PMI-3101 通过测量引线与 DUT 连接,控制台(Console)通过网线发送指令至 PMI 机箱控制器进行测量,然后 PMI-3101 将测量结果以及测量数据反馈至控制台。

_

² 基于 1KHz 正玄波测量。

6 外观及结构尺寸

产品结构尺寸如图 2 所示,外形大小 176.5mm×129.6mm ×25.1mm。

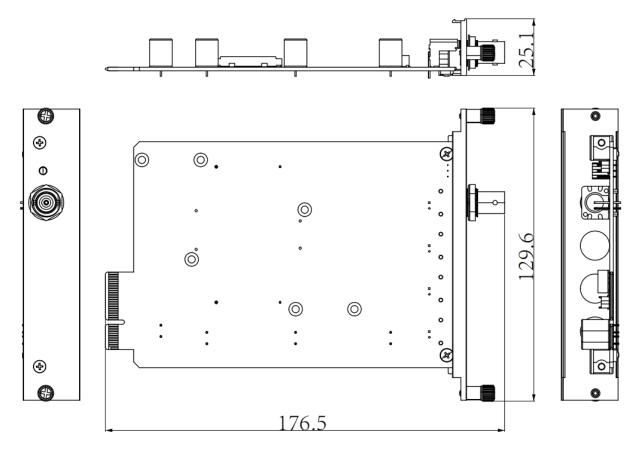


图 2 产品结构尺寸

7 技术支持

公司地址:广州市番禺区亚运大道番山 E 谷 2 号楼思林杰科技 邮政编码: 511450

Building 2, Panshan E-Valley, 1003 Yayun Avenue, Panyu, Guangzhou, China. 511450

电话: +86 20-39122156 / +86 20-29071500(中国区)

+1 408-833-2852(美国区)

网站: www.smartgiant.com.cn

电子邮箱: webl@gzseeing.com

在产品验证过程中,您可以通过电话或电子邮件与我们的工程师保持联系。除此之外,我们的 FAE 团队还可以提供进一步的支持。